Arithmeticity vs. Non-linearity for Irreducible Lattices
نویسنده
چکیده
We establish an arithmeticity vs. non-linearity alternative for irreducible lattices in suitable product groups, for instance products of topologically simple groups. This applies notably to a (large class of) Kac-Moody groups. The alternative relies heavily on the superrigidity theorem we propose in [Md], since we follow Margulis’ reduction of arithmeticity to superrigidity.
منابع مشابه
Superrigidity for Irreducible Lattices and Geometric Splitting
1.1. Superrigidity. In the early seventies, Margulis proved his celebrated superrigidity theorem for irreducible lattices in semisimple Lie and algebraic groups of higher rank. One of the motivations for this result is that it implies arithmeticity : a complete classification of higher rank lattices. In the case where the semisimple group is not almost simple, superrigidity reads as follows (se...
متن کاملBoundaries , Weyl Groups , and Superrigidity
This note describes a unified approach to several superrigidity results, old and new, concerning representations of lattices into simple algebraic groups over local fields. For an arbitrary group Γ and a boundary action Γ y B we associate certain generalized Weyl group WΓ,B and show that any representation with a Zariski dense unbounded image in a simple algebraic group, ρ : Γ → H, defines a sp...
متن کاملA Summary of the Work of Gregory Margulis
Gregory Margulis is a mathematician of great depth and originality. Besides his celebrated results on super-rigidity and arithmeticity of irreducible lattices of higher rank semisimple Lie groups, and the solution of the Oppenheim conjecture on values of irrational indefinite quadratic forms at integral points, he has also initiated many other directions of research and solved a variety of famo...
متن کاملNon-vanishing on the first cohomology
— It is shown here that, for any finitely generated lattice r in certain semi simple groups over local fields of positive characteristics, H (r. Ad) is nonvanishing; this is in sharp contrast with the situation in characteristic zero. Let Kbe a local field (i. e. a non-discrete locally compact field), and let G be a connected semi simple algebraic group defined over K. Let G = G (K), and let r ...
متن کاملCommensurated Subgroups of Arithmetic Groups, Totally Disconnected Groups and Adelic Rigidity
The Margulis-Zimmer conjecture. The subject of this paper is a well known question advertised by Gregory Margulis and Robert Zimmer since the late 1970’s, which seeks refinement of the celebrated Normal Subgroup Theorem of Margulis (hereafter abbreviated NST). Although Margulis’ NST is stated and proved in the context of (higher rank) irreducible lattices in products of simple algebraic groups ...
متن کامل